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Summary: This study examined differences in the impact of visual-manual and 
auditory-vocal based radio tuning tasks on field driving performance. Engagement 
in visual-manual tuning tasks were associated with higher steering wheel reversal 
rates than baseline driving. Both visual-manual and auditory-vocal based tuning 
tasks were associated with higher variances in speed maintenance compared to 
baseline driving. Models were built to utilize driving performance measurements 
as input to a classifier that aimed to distinguish between the three states (i.e., 
baseline driving, visual-manual tuning, and auditory-vocal tuning). Baseline 
driving could be classified from visual-manual tuning at an accuracy of over 99% 
and from auditory-vocal based tuning at an accuracy of 93.3%. Models could 
differentiate between the modalities at an accuracy of 75.2 % and between the three 
classes at an accuracy of 81.2%. Results suggest that changes in driving 
performance associated with visual-manual based tuning are statistically 
distinguishable from auditory-vocal based tuning. While not being free of visual-
manual demand, tasks that involve auditory-vocal interactions appear to differ from 
visual-manual in how they impact driving performance. 

 
INTRODUCTION 

The understanding of how driver distraction influences motor vehicle crashes is evolving as new 
data continues to inform the underlying science to how drivers manage demand. It is well 
established that distractions to the driver may originate from vehicle systems, external objects 
and events, and activities of other occupants (Regan et al., 2009). The rapid proliferation of in-
vehicle infotainment and other systems has heightened concerns about distraction. This may be 
due, in part, to the degree of off-road glances associated with many secondary tasks and the 
strong links between increased off-road glance behavior and increased risk of collision (Klauer et 
al., 2006; Victor et al., 2014). Voice-command interfaces have been promoted as a way of 
allowing drivers to keep their eyes on the road and hands on the wheel, decreasing driver 
distraction and allowing for safer operation of in-vehicle human-machine interfaces (Shutko et 
al., 2009). While some efforts have focused on the cognitive demands involved in voice control 
(e.g., Strayer et al., 2014), it is well established that production voice interfaces also often 
include visual-manual demands (Reimer et al., 2014) and are therefore best considered as 
drawing upon auditory-vocal-visual-manual and cognitive resources (Reimer et al., 2014).  

Previous research has shown contradictory effects in comparing visual and cognitive secondary 
tasks (e.g., Horrey & Wickens, 2005). In some studies, visual tasks were associated with reduced 
velocity and increased lane keeping variability, while cognitive tasks were associated with 
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reductions in lane keeping variability (e.g., Engström, Johansson & Östlund, 2005). Other work 
has found that cognitive tasks can be as detrimental as visual tasks (e.g., Jamson & Merat, 2005). 
Many studies such as these rely on artificial tasks to induce demand and take traditional 
statistical approaches to analysis. More recent efforts investigate behavior at the individual’s 
level and factor together multiple features through algorithms (e.g., Solovey et al., 2014).  

The present study extends machine learning techniques to not only predict secondary task 
involvement, but also to differentiate between secondary task modalities using vehicle telemetry 
data. Predictive models were built using data from an on-road study that examined visual-manual 
and auditory-vocal radio tuning tasks with a production-level Human-Machine Interface (HMI). 

METHODS 

This study is a secondary analysis of a subset of data from a previously collected dataset (see 
Reimer et al., 2013 for complete details). A summary of key methods appear below. 

Participants and Apparatus 

The sample consisted of 60 active drivers equally distributed in two age groups (20-29 years and 
60-69 years). Data collection was conducted in a 2010 Lincoln MKS equipped with a customized 
data acquisition system for time-synchronized recording of telemetry from the vehicle CAN bus. 
The study was approved by the local human subjects review board. 

Tasks 

Drivers were asked to complete a number of in-vehicle tasks using the vehicle’s infotainment 
and communication system. This report focuses on an analysis of data from drivers’ use of 
visual-manual controls and auditory-vocal controls for radio tuning. Comprehensive training was 
provided while stationary in a parking lot setting prior to assessment while driving. The visual-
manual tuning task was equivalent to the “hard” tuning task employed in the Crash Avoidance 
Metrics Partnership (CAMP) Driver Workload Metrics project (Angell et al., 2006). It required 
four manual steps: (1) pressing the power / volume button to turn the radio on, (2) pressing the 
radio button, (3) selecting the FM1 or FM2 band button on a touch-sensitive display, and (4) 
rotating the tuning knob to locate a specified station. The auditory-vocal tuning task had the 
same functional goal as the visual-manual tuning task. However, it required only one manual 
operation (press a “push-to-talk” button on the steering wheel) to activate the voice-command 
system. The instructions for the four tuning tasks were: 

Visual‐manual 1: Your task is to turn on the radio, switch to FM2, and tune to 100.7 

Visual‐manual 2: Your task is to turn on the radio, switch to FM1, and tune to 95.3 

Auditory‐vocal 1: Your task is to turn the radio on using the push‐to‐talk button and requesting FM 100.7 

Auditory‐vocal 2: Your task is to turn the radio on using the push‐to‐talk button and requesting FM 95.3 

Procedure 

The driving portion of the study was conducted on RT I-495 in the greater Boston area. The 
portion of roadway utilized had three travel lanes in each direction and a speed limit of 65 mph. 
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The road was largely bordered by trees that also often divided traffic in the opposite direction. 
Half of the participants completed the voice tuning tasks while traveling south and the manual 
tuning tasks while traveling north. The other half started with the manual tuning tasks. 

Data Preprocessing and Aggregation 

Driver performance data (telemetry data), acquired directly from the vehicle’s bus at a sampling 
rate of 10 Hz, were taken as input to create and evaluate predictive models. Subsequent sections 
describe details of feature generation for the models.  

Steering wheel reversal rate. Steering wheel reversal rate measures the frequency of steering 
wheel reversals larger than a certain angle (so-called “gap”) over a time period. A change of the 
steering wheel angle that is larger than the gap can be counted as one steering wheel reversal 
event. In this study, a gap size of three degrees was set as input parameter for the steering wheel 
reversal rate computation (see Östlund et al., 2005 for computational methods). 

Normalized velocity. Normalized velocity is computed as the change in velocity relative to 
baseline driving. The baseline driving period is derived from a two minutes of data before task 
periods (i.e., the tuning tasks) (see Reimer et al., 2013 for details).  

ܸ௭ௗ ൌ
ೝೌೢି		ஜ್ೌೞሺೝೌೢሻ

್ೌೞሺೝೌೢሻ
 (z-score function)                        (1) 

 

Window. Windows with multiple aggregation functions were applied to the raw input signals 
(i.e., steering wheel reversal rate and normalized velocity) in order to create feature vectors. The 
window length was based on the completion time of each task period for each subject, thus 
allowing for the creation of one feature vector per subject and task period. Two task periods were 
related to each task modality (i.e., visual-manual and auditory-vocal). Three aggregation 
functions were implemented to create features based on the normalized velocity: maximum, 
mean, and the first derivative (i.e., acceleration). For the steering wheel reversal rate just the 
mean aggregation function was implemented. 

Rescaling function. Windowing resulted in features with a disparate range of values (which can 
be problematic for machine learning algorithms). Therefore, a rescaling function was 
implemented to move the features to a more comparable scale. 
 

௭ௗݔ ൌ
௫ೝೌೢି		୫୧୬ሺ௫ೝೌೢሻ

୫ୟ୶ሺ௫ೝೌೢሻି	୫୧୬ሺ௫ೝೌೢሻ
 (rescaling function)           (2) 

 

Classifiers 

Two supervised machine-learning algorithms, Hoeffding Tree (HT) and Naïve Bayes (NB), were 
implemented. The Hoeffding Tree is a tree-based model that requires fewer training instances 
compared to regular decision trees (Bifet et al., 2010). Naïve Bayes Classifiers performs 
Bayesian prediction with the “naïve” assumption that all features are independent (Bifet et al., 
2010). Naïve Bayes Classifiers are also known to perform well with smaller training sets and 
converge faster to its asymptotic error than discriminative models like logistic regression (Ng & 
Jordan, 2002). Furthermore, both classifiers (Hoeffding Tree and Naïve Bayes) can be used for 
binary and multiclass classification.  
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Model Evaluation  

Blockwise k-fold cross validation was used to evaluate the models (Rumpold, 2014). This 
method operates by assigning feature vectors for every subject to blocks. This approach controls 
for within-subject differences that classical approaches to cross validation ignore, i.e., just split 
data randomly into training and test data without consideration of subjects. With k = 5 in our 
sample, 20% of the blocks were used for testing in every evaluation step.  

Accuracy (Acc) and Kappa (Kap) were used as performance statistics. Accuracy is simply the 
percentage agreement between the classifiers’ decisions and the actual task category. Kappa 
normalizes percentage agreement by subtracting the amount of agreement expected by chance. 
Table 1 shows ranges of Kappa values and corresponding interpretive performance levels. 

Table 1. Kappa value interpretation (adapted from Altman, 1990) 

Kappa value Performance 

0 – 20 % Bad 

21 – 40 % Fair 

41 – 60 % Moderate 

61 – 80 % Substantial 

  81 – 100 % (Almost) Perfect 

Four features (mean velocity score, max velocity score, mean acceleration, and mean steering 
wheel reversal rate) were used to build the models. The models’ predictive abilities were tested 
with four conditions: (1) visual-manual vs. auditory-vocal tuning periods, (2) visual-manual 
tuning vs. auditory-vocal tuning vs. baseline driving periods (3 classes), (3) auditory-vocal 
tuning vs. baseline driving periods, and (4) visual-manual tuning vs. baseline driving periods.  

RESULTS 

Figure 1 shows group level data for the four features that were used as model inputs across 
baseline driving, visual-manual tuning, and auditory-vocal tuning periods. ANOVA (one-way) 
was applied to test the effect of task type on the four features.  

 
Figure 1. Feature distributions across task modalities and baseline driving 
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There were significant main effects of task types (e.g., baseline driving, visual-manual tuning, 
and auditory-vocal tuning), except on the mean acceleration [F (2, 174) = 3.38, p < .05 for the 
mean velocity score, F (2, 174) = 3.35, p < .05 for the maximum velocity score, and F (2, 174) = 
11.6, p < .001 for the steering wheel reversal]. As a post-hoc test, paired t-test was applied to all 
combinations (e.g., baseline vs. VM, baseline vs. AV, VM vs. AV) from the four features. For 
the mean velocity and maximum velocity scores, there were significant effects of the task type 
between baseline driving and visual-manual tuning [t (59) = 4.39, p < .001, and t (59) = 6.51, p < 
.001]. For the mean steering wheel reversal, there were significant effects of the task type for 
visual-manual vs. auditory-vocal comparison [t (59) = -6.85, p < .001] and baseline driving vs. 
visual-manual tuning comparison [t (59) = -9.28, p < .001].  
 
Figure 2 summarizes performance for each model and classification condition. All models 
performed better than chance and there was no remarkable difference in model performance 
between the two classifiers. 

 

 
Figure 2. Model performance across all classification sets (note: upper panel shows accuracy measures and 

bottom panel shows Kappa measures) 

Classification accuracy was the lowest when attempting to distinguish between visual-manual 
(VM) and auditory-vocal (AV) radio tuning periods (NB: Acc = 75.2%, Kap = 50.5%, HT: Acc 
= 74.8%, Kap = 49.6%), indicating moderate model performance. Classification performance 
was strongest when distinguishing between visual-manual tuning periods and baseline driving 
(NB: Acc = 99.2%, Kap = 98.3%, HT: Acc = 97.5%, Kap = 95.0%). This strong effect indicates 
that visual-manual tasks were easy to differentiate from driving without a secondary task (e.g., 
baseline driving). The auditory-vocal tuning pattern was also fairly distinct from baseline driving 
and resulted in high classification performance (NB: Acc = 93.3%, Kap = 86.7%, HT: Acc = 
92.5%, Kap = 85.0%), though this is not as high as visual-manual vs. baseline. Interestingly, 
model performance for 3-class classification (e.g., VM, AV, and baseline driving) was also 
remarkably high (NB: Acc = 81.2%, Kap = 71.9%, HT: Acc = 78.4%, Kap = 67.6%). 
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DISCUSSION AND CONCLUSION 

This study examined the impact of visual-manual and auditory-vocal radio tuning tasks on 
driving performance. Group level differences show that engagement in visual-manual tuning was 
associated with higher steering wheel reversal rates than baseline driving and auditory-vocal 
tuning. Visual-manual tasks led to decreased mean and maximum velocity relative to baseline 
driving, whereas auditory-vocal tasks did not show significant differences from baseline driving. 
The performance of two machine learning algorithms for classifying secondary task engagement 
from baseline driving and differences in task modality shows that differences in secondary task 
modalities were predicted with an accuracy of 75.2% and a Kappa value of 50.5%. Classification 
patterns suggest that visual-manual tuning has the most significant impact on driving behavior 
(based on the higher model accuracy compared to other conditions). Auditory-vocal tuning was 
fairly distinguishable from baseline driving. These results suggest that the impact of visual-
manual tuning and auditory-vocal tuning on driving performance is statistically differentiable. 
Overall, these findings suggest that there are fundamental behavioral differences when drivers 
engage in visual-manual and auditory-vocal tasks (note that there might be other differences, 
such as task structure or task completion time, between visual-manual and auditory-vocal tuning 
tasks along with a task modality as the present study tested a production level HMI to secure face 
validity). While there is clear evidence for risk associated with visual demand/distraction during 
driving (Klauer et al., 2006; Victor et al., 2014) and strong support for the proposition that 
auditory-vocal interfaces can lower visual demand relative to visual-manual alternatives for 
accomplishing the same task (Reimer et al., 2014), it is unclear to what extent the reduction in 
visual demand associated with voice interfaces alleviates overall crash risk. Only naturalistic 
studies can establish a comprehensive understanding of crash risk, but with the absence of such 
data, voice-based interactions appear to have a lower degree of impact on overt driving 
performance than those that are more manual in nature. Furthermore, the results illustrate that 
additional research is needed to more fully consider the most salient parameters in which to 
measure the impact of multi-modal interfaces on driver behavior. While this study only tested 
one type of HMI task on one production-level system, future work aims to extend the types of 
tasks examined across a broader range of vehicles to assess generalizability.  
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